
The linguist and the micro-computer:

the encoding of a medieval corpus

by

Judy PORTIER
Pieter VAN REENEN

AMSTERDAM

743

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



1.- Why use a microcomputer

Many linguists interested in computational Iinguistics leave the programming to professionalprogram­
mers, Sometimes, they are even advised, in no uncertain ter ms, to keep their hands off the computer
and the programming. This adVice will he followed the more willingly, if the Iinguist is put off by the
technique of programming andbythe machines involved. However, this does not al ways result in an
optimal use of the possibilities of the computer. We do not think that the linguist has to write ail
programs himself, but we are convinced that the linguist who is familiarwith the technique of pro­
gramming can make better use of the computer facilities. He learns v.vhat kind of problems he may
solve by means of the computer and how to formulate these problems, i.e. he learns to think in terms
of unarnbiguous algorithms. The Iinguist will be stimulated to formulate his hypotheses in an explicit
and exact manner, for vagueness and ambiguities will result in output fromthe computer he did not
intend to ask for. The microcomputer is an excellent tool by means of which the Iinguist céln not only
learn the technique of programming but he will also be able to use the programs on his research projects.

The microcomputer may serve to process data and to test complete theories, isolated hypotheses,or
even hunches, so it can be used for extensive and for small-scale research projects. The microcompu­
ter is a cheap alternative for the minicomputer Or a larger system: for about $ 6000, - a complete
configuration including disk unit and printer can be bought. Once this amount is invested one has
at his disposai an unlimited amount of CPU-time, for which one does not have to pay. When the
linguist works with a mini-computer or a larger system, he (or his research unit) will have to pay for
the CPU-time used, since it is nothis or (its) own machine. This will often amount to a considerable
charge to the research budget. .If there is no money left, there can be no more research.
Furthermore the user ofa microcomputer has direct contact with the data by mean~ of his video
screen (he works on-line). He can control his output and interrupt the running of a program the
moment he observes that something is wrong. Users .of larger systems have to pay extra for working
on-Ii ne. Since money for research is becoming scarce, and budgets of research units (of Faculties of
Arts) tend to decrease, investment in research projects will have to be as economical as possible.
We therefore advocate the introduction of the microcomputer in linguistic research units (in Faculties
of Arts and the Iike).

2.- The AVT project

The project started in august 1980 and is a joined project of the 1nstituut voor Nederlandse Lexico­
logie (INL) (Institute for Dutch Lexicology) in Leyden and the Department of General Linguistics of
the Vrije Universiteit (VU) (Free University) in Amsterdam. Participants, besides the two authors of
this paper, are W. Pijnenburg and P. van Sterkenburg.

The project has both a long term and a short term purpose :

- the creation of a Iinguistic data-base of Early Middle Dutch; (long term). Our intention is to

745

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



make the material accessible to phonological, morphological, syntactical and lexical analysis;

the production of an Atlas of Early Middle Dutch Language Variants: Atlas van Vroegmiddel­
nederlandse Taalvarianten (AVT) (short term : scheduled for publication at the end of 1982).
As is usual in medieval texts, tokens exhibit abundant graphic variation. As far as phonological
variation is concerned, we accept the hypothesis that the spelling of the documents reproduces
important aspects of the pronunciation. We therefore consider these documents to be appro­
priate material for dialectical and diachronical phonological analysis.

The corpus we work on consists of more than 2000 official documents (charters) and a glossary,
written between about 1230 and about 1325. Besides the glossary, the corpus consists of inventories,
rolls, bills, testaments and customaries. The majority of documents is known as the "Corpus Gysse­
ling", published in Gijsseling (1977).

We chose this corpus because :

the language used in the documents is located in time and space : generally we know when
and where (and even by whom) these documents - which are originals - were written;

the documents cover an extensive part of the geographic area in which the Middle Dutch
language (or dialects) were spoken. Figure 1 shows the geographical distribution of the
documents.

The number of wordforms (occurrences) is about 1,000,000; the number of differently spelled word
forms is about 50,000. For budgetary reasons we decided to realize our project on a microcomputer.
The configuration we work with consists of a Exidy Sorcerer microcomputer, Z80 CPU, 64 Kbyte
memory, 2 diskdrives for fi oppy disks 5 1/4", with a total capacity of 630 Kbyte formatted on-Ii ne
storage. Our programs are written in Pascal (Pascal MT/3.2) and in Z80 Assembly language and work
under the CP/M operating system.

3.- Activities

The operations we have to carry out to realize our project are partly determined by the fact that the
data was already on magnetic tapes before we started, but not specifically processed for linguistic
research. When data entry is carried out specifically for linguistic purposes, provisions can be made
to facilitate this research : words can be marked by unique boundaries, (some) linguistic codes can be
added, etc. However, manu al input of data is time-consuming and labour-intensive, and therefore
too costly for many research budgets.

Fortunately more and more printing-offices are making use of computer controlled printing proce­
dures, solots of recently published data will be available in a computer readable form at low cost.
Not recently published text can be made available byan optical reading machine, which recognizes
printed characters and stores them on a (magnetic) recording medium.

746

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



So, although our situation may be rather unique at the moment we think that our experience can be
useful to others sincewe areconvinced that in future more linguists will make use of material origi'
nally processed for other purposes.

ln the remainder ofthis paper we describethe strategy we use for encoding the corpus and the solu­
tion we found for a fast and efficient retrieval of information.

3.1.- Encoding strategies

For purposes of linguistic research the words must be given a judiciously sophisticated code to make
it possible to get information about the phonological, morphological, syntactical and lexical pheno­
mena in our corpus.

It is of course possible.to add the code to the lexical items by hand, but we rejected thissolution
for the following reasons :

it is time consuming; it would take four people at least a year (we had 1,000,000 word
occurrences) and as none of us can work fulltime on this project it would have taken much
longer.

we would not have learned anything of use for a similar job in the future; having finished this
monkish work, we would still need the same amount of effort and time to encode, say, a
corpus of medieval literary texts.

It is also possible to let the. computer add a code. to the most frequent word forms and encode the
rest b'y hand. Then 366,403 occurrences (64 different word for ms) will be encoded, i.e. ca. 37% of
the total. Which leaves 63 % occurrence (still about 50,000 different word for ms) to be done. We
do not think it possible to encode ail occurrences (100%) automatically, but we ought to be able to
handle more word forms (perhaps 70-80%) on the basis of linguistic analysis. 50% of the word forms
are hapaxes (i.e. they occur only once in the corpus). We therefore have to try and formulate rules
by means of which word forms can be combined.

3.1.1.- Application of rules

Middle Dutch texts can show variation in spelling, the linking of lexical items, clisis, assimilation,
syncope, etc. If we succeed in formulating rules for these phenomena, we will not only be able to
combine the different forms belonging to the same lemma and so save time, .but the r.ules may also
provide us with ideas for later, when we want to look at distributional characteristics.

Thé rules we formulated must be divided in :

context free rules, which can be applied independent of context;

contextual rules, application which is dependent of context.

747

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



Because we need the originalspelling of the word to encode the original corpus, we created a new
file in which each word form wasrepresented both by the original form and by a dummy (or a copy
of the original form) to which the simplification rules could be applied.

To check whether application ofa formulated rule in fact produced the expected result, the result
must be Iisted. If an error is discovered one has to decide between the following alternatives:

the rule should not be applied or should be reformulated; because errors are systematic errors
they can easily be corrected;

the rule can be applied, but a manual correction will have to b~ made;

since our main purpose is encoding and not the formulation of rules, we prefer efficiency over
elegance and accept manual correction when the error rate is low.

When applying rules, the order in which the rules are to be used must to be taken into account.

We will give examples of. formulated rules and their application on some word forms representing the
word "iar" (year) in Middle Dutch.

Context free ru les :

1. { j/y --..:;. i
e.g. wherever the letters "y" or "j" are used the letter "i" can be used. Therefore, the letters
"y" and "j" in the wordforms can be replaced by "i";

2. h --7 [0]
in many texts, use of the "h" is arbitrary. Forms like "ihar" appear besides "iar" (year), so
one can decide to delete the "h" altogether.

Contextual rules :

3.l e/i -7 [0] iff V/- -
long' vowels can be represented by the vowel (V) followed by "e" or ''i''; so the letters "e" and
"i" can be deleted if and only if they are preceded by a vowel.

4. c -~ ts iff # / - - /h
"c" has to be replaced by "ts" if and only if it is preceded by a word boundary and followed
by "h"

Of course, rule number 2 can not be applied before application of rule number 4.

3.1.2.- Defining lexical items

After the word forms are simplified a listing can be produced containing the different dummy word
forms. The next step is to formulate definitions by means of which the lexical items can be identified.
A reverse listing of the above mentioned dummy word forms can be very helpful, because certain

748

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



suffixes can indicate the c1ass of the word, e.g. the suffix "-scap" is always part of a noun.

ARTICLE

NOUN

FLEX.NOUN

id/ds/ts} iff #/ - -/NOUN
"d" or "ds". or "ts" is an article if and only if they are preceded by a word
boundary and followed bya noun.

l iar/scap} iff - -/{ e/en/es/s/(OJ}{ #}
a dummy word form containing "iar" or "scap" can be identified as a noun if
and only if it is followed by "e", "en", "es", "s". or nothing, which is followed
by aword boundary.

{ e/en/es/s} iff NOUN/~ - /#
"e", "en", "es" or "s" are flexion morphemes of a nounif andonly if they are
preceded by a noun and followed by a word boundary.

The computer will now be able to identify the lexical items and we can instruct the computer to
split article and noun if they are tied in one wordform. At a later stage this word splitting will have
to be executed in the original file. We must therefore prepare to let the computer know this in due
time. We will insert the" +" in the original file later to supply the information that the words were
tied together originally. When the lexical items are provided with a code, we can instruct the compu­
ter to add a code to every dummy in the file. This amountsin fact tohaving coded ail corresponding
original forms.

For the encoding one can choose between the followil1g alternatives:

Only those forms must get a code which can be classified unambiguously as a member of just
one word c1ass.

Forms which can bea classified as a member of more than one word class can also get a code
if the form occurs most frequently as a member of one word class.
e.g. "Ende" .can not be unambiguously classified. It can belong to the wordclass 'conjunctions'
(in which case it would be translated as "and"), but it can also belong to the word class 'nouns'
(when it would be translated as "end"). It is, however, reasonable to expect that the frequency of
its occurrence as a conjunction will be much higher. One can therefore decide to encode al,l
occurrences of "ende" as a conjunction and correct the errors semi-automatically : if "ende"
in the original file is preceded by an article then it has to be encoded as a noun.
CODE-X ---p CODE-NOUN iff lCODE-ARTICLE} fende} / - - - -

The unclassified (uncoded) forms can be deleted from the wordfile. They can be stored in a file
containing the ambiguous forms.

3.1.3.- 1nserting the code

When we finally have at our disposai a file consisting of wordforms + codes, a new file containing

749

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



only alphabetically sorted original forms + codes can be created. The computer can then quickly
find out if a word read from the original file is represented in the alphabetical list. If so the code can
be attached to it. If we want, we can instruct the computer to display the word with its context in
case the word is not found in the list and to wait until the code is typed at the keyboard. Another
solution is to create a file containing the homographs with the codes possible for the specifie homo­
graphs. When these codes are displayed as weil when .a homograph is found, input can be facilitated.

3.2.- Retrieving formation

When the corpus will be encoded we want to be able to retrieve infor·mation from our data base. For
the planned atlas it will not only be necessary to get information about the Iinguistic units themselves,
but we will also want to know where and when a specifie wordform was used. We want to ask
questions like :

What types with linguistic property x are used ?

What types are used in linguistic region x ?

ln which linguistic regions type x is used ?

1n which scriptoria type x is used ?

How many times are the types x and y used ?

The documents, which were already dated, were numbered as weil, so that they can be uniquely
identified. For our questions concerning the location we divided the geographical area in linguistic
regions. Figure 1 shows the regions we distinguish.

As the file is very large, it takes quite a long time to get the information asked for if the computer
has to read every item in the data base, even when a specifie document cou Id be skipped. We found
the following solution to minimize the time needed to find information. The file containing ail
occurrences + codes (fileO) needs to be preserved for further investigation, but as it is not necessary
for the questions we want to ask to maintain each occurrence of the word forms, we created a new
file (file1) in which for each document the following information is stpred :

a number for identification of the document;

an alphabetical list containing the specifie word forms occurring in that document;

for each different word form: - the code belonging to that word form,
- the number of occurrences in the original document.

Thus the number of occurrences can be diminished and consequently the time needed to retrieve
information about the occurrence of wordforms. The alphabetical sorting facilitates the search in
the file for a specified type, so time is reduced even more.

750

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



A further reduction of time can be achieved by using the facilities of our disk operatingsystem. The
operating system makes it possible for the disk head to be moved directly to a specified location on
the disk. So if the location of the information wanted is known, it will not be necessary to read the
entire disk to extract that information. If we know from which document we need the information
and where that document is stored on disk, we can minimize the time necessary for retrieving that
information.

We therefore created another file (file2) containing :

the identification numbers used for the documents;

for each document specifications like :
the identification number of the diskette on which the document (file1) is stored,
the first and the last address on the diskette used for the document,
the year the document was written,
an identification number for the centre at which the document was written,
an identification number for the Iinguistic region in which the centre is located (see figure 1).

Selection of the documents to be considered can be carried out very fast by ordering the computer
to look in file2 and select those documents that satisfy certain specified qualifications. The list of
documents is sorted according to disk number and the address of the first location on the disk used
for the document. After a diskette wh ich was indicated by the computer, is inserted in the disk drive,
the first location number can be passed to the operating system. Now the computer can start reading
data in the document without spending time reading data that can be skipped.

4.- Conclusion

After we will have realized our project wewill notonlyhavegainedinexperienceVi/ithiregardtothe
computer facilities but we will also have enlargedand made explicitourkn<>wl~dgeofMiddleputch.
Besides the encoded corpus, we have at our disposai a Iist of 50,000 wordforms + codes, and a list
of linguistic rules and definitions, which can be applied to Middle Dutch word forms. These lists
can not only be used for a similar project in the future, but they can also be useful when we want
to write a Middle Dutch grammar.

NOTES

GYSSELI NG (1977), MAU RITS, Corpus van Middelnederlandse teksten (tot en met het jaar 1300)
uitgeg, door --, m.m.v. er van woordindices voorzien door Willy Pijnenburg, 's Gravenhage,
Martinus Nijhoff, 1977.

751

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



Figure 1

GEOGRRPHICRL DISTRIBUTION

OF THE DOCUMENTS

• 90 -100ï. • 10 - 29ï.

ii 70 - 89ï. ~ 1 - 9ï.

• 50 - 69ï. IEB O, 1 -0.9ï.

• 30 - ll9ï. D Oï.

GEOGRRPHICRL DISTRIBUTION OF THE DOCUMENTS

1. HOLLAND-WEST 6.91. 7. NEDERRIJN 0.31.

2. HOLLAND-OClST 2.91. B. VLARNDEREN-fŒST S6. 1ï.

3. UTRECHT I.lli. 9. VLRRNDEREN-OOST 19.9%

4. OOST-NEDERLAND 0.2% ID. BRRBANT-WEST B.21.

5. ZEELAND 2. II. Il. BARBANT-OOST 0.31.

G. BRRBRNT-NClClRD 1. 3% 12. LlMBURG D.ll%

752

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



d~lmmY dUm01Y cod", code ol~i si na 1 fOPOl chansed'ori9inai

iar iar

iar ia"-I'

iar ihaer

i al~ : iha.r

i al~ jal~

i al' Jaer

i.:\l~ hÙI'

i al~
,

Jhael~

iar yar

ial' , ya."'l'·
d iar diaer d+ +iaer

d iar · dial~ d+ +lal~·
d i al~ dJa... r d+ +JOIer

idl''? ,
i ael""e

idre ial'e

iar"tS' i hael~1?

i al~e Jael~e

s ial~S
, si a"-l'S S+ +iaers

s ial~s sJaers s+ + Jael~s

ts iars chiael's ch+ +iael's

ts iars chiaps ch+ +iars

Fi9ure 2: An exaOlple of the simplification of word forros

d'?notin9 'year'

753

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.



document number : specifications

I)./ord form
I).lor'd f orm
I.vord f orr,)

code
code
code

f r'e9l' a'nc y
fl~er.uency

fl~'2''''lUenc.Y

document number : specifications

I).lol~d forr,) code fr'';?''ILlenCy
~I.tord f Ol~r(1 code fr'e9UenCY
I.~'ol~d fOl~m cod':? freClLlenCY
v.lord f opr'i cod':? fl~eqLlenCY

Figure 3: example of the structure of filel

doc.nr : disK nr l disK addr : year l re9ion : scriptorium

3 1 35 1236 a 9
4 1 ~;O 1237 8 7
5 1 70 1250 5 6
6 1 105 1250 ...,

3~

7 2 1 1250 3 4

Figure 4: example of the structure of file2

754

Actes du Congrès international informatique et sciences humaines 
1981 - L.A.S.L.A. - Université de Liège - Tous droits réservés.




